Abstract

Analysis of gene expression microarray data is complex due to the usually large
number of genes in one assay, few measurement points per gene and noisiness
of the data. We introduce three algorithms, two developed by us, for gene ex-
pression analysis. Algorithm 1 and 2 attempt to identify genes with significant
changes in expression during an experiment. The methods of the algorithms
are quite different, though. Algorithm 1 looks at the correlation in a gene’s
expression profile whereas algorithm 2 projects the data into a 2-dimensional
subspace of interest. We use Singular Value Decomposition (SVD) to identify
such subspaces. Algorithm 3 can be used to find clusters of co-expressed genes
among the gene expression profiles identified by Algorithms 1 and 2. Cluster-
ing gene expression profiles identified by Algorithms 2 and 3 helps us avoid
clustering noise and gives us higher confidence on the quality of the clusters
we retrieve. The algorithms were applied to the yeast cell cycle data of Cho
et al.[2].
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‘ 1. The three algorithms |

Algorithm 1: Filtering genes with the Serial Correlation Test

To improve the quality of subsequent analyses of gene expression data, the
data is often filtered, i.e. it is attempted to remove genes with expression
profiles that seem mostly due to noise.

To filter genes based on fold-change is a common approach. We introduce
the serial correlation test [4], a statistical test based on the correlation of the
measurements of a gene’s expression levels. The technique attempts to detect
if observations in a time series have random fluctuations. We find it more
appropriate than the fold-change for time series gene expression data, or GE
data that can be ordered by other variables, e.g.the varying concentration of
a chemical during an experiment. Such tests take into account measurements
of a gene on all arrays, and their correlation, not just measurements on single
arrays (as in some fold-change approaches). To our knowledge it is the first
time the serial correlation test is applied to gene expression data.

For each gene expression profile a serial correlation coefficient is calculated
(see Algorithm 1). Large coefficients indicate that the fluctuations of the ex-
pression profile are unlikely to be of random nature. If a gene’s coefficient is
below a critical value, the gene will be removed from the data set. Critical
values for the coefficient are listed in tables, see for example [4] page 201.

ALGORITHM 1: Serial Correlation test for filtering noisy genes.

1. Let x; be the measurement on a gene x at time ¢;, 2 = 1, .., p.
2. Calculate the serial correlation coefficient with:
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3. If s, is smaller than some critical value s., gene x is removed from the
data set.

Algorithm 2: Filtering genes by projection into interesting sub-
spaces

Algorithm 2 is related to algorithm 1 in that it also attempts to 'filter’ genes,
to find the ones with significant expression profiles of interest. It is different
in that we project the data into a 2-dimensional subspace of interest. More
specifically, we calculate the correlation coefficient of a gene’s expression profile
with two orthonormal directions, or patterns of interest, and plot the coefhi-
cients against each other. Genes that project to the outside of the plot will
have high correlation in the subspace and therefore will be more likely to show
some real expression change than the genes at the center of the plot. A crucial
assumption we make is that there is more structure among the genes at the
outside of the plot, the ones that likely show some real change in expression,
and the genes at the center, which most likely project where they do due
to noise in the expression profiles. Our algorithm searches for the boundary
between these two regions, where the change from the nearly uniform distri-
bution at the center to a more structured distribution at the outside of the
plot is largest. Note algorithm 2 does not use any parameters that need to
be known a priori or tuned. The boundary is derived strictly from the data.
Should a data set have more noise, the boundary will be further away from
the center, as our algorithm attempts to be conservative. We want to be con-
fident about the genes at the outside, that they represent some real change in
expression. Or, In statistical terms, we are more concerned with minimizing
the false positive rate than the false negative rate.

Here we used singular value decomposition (SVD) [3] to identify interesting
subspaces in the data. Any other set of orthonormal directions, or patterns,
of interest could be chosen.

ALGORITHM 2: Algorithm to find ’interesting’ genes from correlation plot.

. delect two orthonormal directions and compute their correlation vectors
Cy, and ¢y,

- Chose an 1nitial value rq, then: r <= r

3: while r < 1 do

4 Find the set of genes inside the circle with radius r: I, < {i :

c?(fl)Q + CSJZQ)Q < 7?2}
5 Compute the one-dimensional density, fr, of the polar angles of the
genes in I,
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6:  Compute the value of g(r) = medianj{\fr(a:j) -~ %\}, which is a mea-
sure of the deviation of the density f}a from the uniform density %, over
the support of the polar angles [—m, 7|.

7. Assign a new value to r for the next iteration: r <= r + h

3. end while

- Find the boundary r that maximizes the rate of change of g, 7.e.that

maximizes ¢’

e

Algorithm 3: Detection of clusters of co-expressed genes

Algorithm 3 attempts to detect clusters of co-expressed genes in the set of
genes returned from algorithm 2, the genes with high correlation with the
2-dimensional subspace. Because the genes have been 'filtered’ by algorithm
2, our confidence about the quality of the clusters can be high. Algorithm 3
searches for clusters in the 2-dimensional subspace used by algorithm 2.

ALGORITHM 3: Find clusters of co-expressed genes

1. Apply Algorithm 2: Select two orthonormal directions and compute the
value of the boundary with radius 7.
2: Finéi the 82€t of genes outside the boundary with radius 7: I; <= {i
P s
Compute the density, f\f, of the polar angles for the genes in I
Se <= {J : x; is a local maximum for f and f(a:]) > 1/27}
Let s(;) be the ordered values of S¢ (x-values at the peaks)
nbe <= card(S¢)(Number of peaks)
hi <= 1/2m (Start with the uniform density as minimum height)
for j =1 to nb. do
lwr <= min{m : m < s}, flm) > kj and fim) < f(m+)} (Left
boundary)
10: upr <= max{m :m > s, flm) > kj and fim) > f(m+)} (Right
boundary)
11: - cluster; < {k : lwr < 0}, < upr, where 0, is the polar angle for gene
k } (Genes in the cluster)
122 hj <= 1/(2m — upr + lwr) (Increase the minimum height)
13: end for

‘ 2. Application of the algorithms to cell-cycle data I

We applied all three algorithms to the S. cerevisiae cell-cycle data [2]. 6220
genes were monitored every 10 mins for 17 time points, covering nearly two
cell cycles.

We removed 3000 genes that seemed to have quite random expression profiles
with algorithm 1. We applied SVD to the remaining gene expression data. Fig-
ure 1 shows the profiles of the first three eigengenes (a notation introduced by
Alter et al.|1] for the patterns of the right-singular vectors in gene expression
analysis with SVD) and the singular values. The second and third eigengenes
show periodic patterns very close to a sine function. Those two eigengenes
were used in algorithm 2 and 3 to detect the cell cycle related genes.
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FIGURE 1: a) The first three eigengene profiles. b) Relative expression level for the
SVD eigengenes.

Figure 2 shows the boundary algorithm 2 selected and the three high den-
sity regions of co-expressed genes that were selected by algorithm 3. Figure
3 shows the expression profiles of the genes in these 3 clusters. The periodic
expression profiles of the genes in these clusters are evident. The different
phases of the periodic patterns of the three clusters are evident as well.

The number of genes outside the circle with radius 0.67, :.e. potentially cell
cycle regulated, is 895. Cho et al.|2]| reported 416 cell-cycle regulated genes
of which 231 agree with ours. However, they first filtered the genes by a fold-
change approach and inspected the remaining 1300 genes visually. Among the
895 genes that were detected as potential cell cycle regulated by our method
about 600 were removed by the fold change criteria used by Cho et al.. Most
of these 600 genes showed clear periodic expression patterns. Two genes that
stood out as particularly interesting were SWI6 and MBP1 which are known
to be involved in the cell-cycle regulation and were detected as exhibiting
clear periodic patterns by our methods but were removed by the fold-change

Three Algorithms for Filtering and Analysis of Gene Expression Data.

RAPHAEL GOTTARDO!, ANDREAS RECHTSTEINER', Luis RocuA!, MicHAEL E. WALL!, ToMm BRETTIN'

approach of Cho et al.. Figure 4 shows the expression profiles of the two
genes.
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FIGURE 2: Correlation plot of the cell-cycle gene expression data. The boundary
detected by algorithm 2 and the clusters detected by algorithm 3 are shown.
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FIGURE 3: Three different clusters related to the cell-cycle identified by algorithm 3.
Sub-figures a-c) show the expression pattern of each gene in the cluster. Sub-figures d)
shows the average expression patterns for the three clusters.

Expression profiles: MBP1 and SWI6
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FIGURE 4: Expression profiles of the two genes coding for SWI6 and MBP1
respectively.

‘ 3. Conclusion |

We introduced three new algorithms for identifying genes with interesting and
significant variance in their expression profiles. Algorithm 1 helps to remove
noisy gene expression profiles. Algorithm 2 then attempts to identify the
genes with the interesting and significant expression profiles. Because we 'fil-
ter’ genes in these two steps, we avoid clustering too much noise with algorithm
3. It should be noted that algorithm 2 is parameter free, it is completely data
driven. Furthermore, algorithm 3 makes no assumption about the number of
clusters in the data, such knowledge is not required a priori.
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